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Radiation reaction in the Kerr gravitational field 

D V Gal’tsov 
Faculty of Physics, Moscow State University, Moscow 117234, USSR 

Received 9 September 1981, in final form 27 July 1982 

Abstract. The radiative Green functions for the massless scalar, electromagnetic and 
gravitational perturbations of the Kerr space-time are constructed using the Teukolsky 
formalism. The reaction force acting upon a test particle, which can emit radiation of any 
spin s = 0, 1 ,2 ,  is calculated and shown to account correctly for the energy and the angular 
momentum carried away by radiation to infinity and to the event horizon. The azimuthal 
component of the reaction force is found to remain finite for a particle at rest in the 
Boyer-Lindquist coordinates owing to non-zero angular momentum transfer to the rotating 
hole. This anomalous static force of radiation reaction emerges as the counteraction to 
Hawking’s tidal friction. 

1. Introduction 

Despite the recent progress in treating the back action of gravitational radiation in 
the weak-field slow-motion approximation of general relativity (GR) (Misner et a1 
1973), the problem of radiation damping in GR still remains the subject of discussion 
(Ehlers 1980). The explicit proof of the equality between the energy carried away 
by gravitational radiation and the work produced by the radiation reaction force is 
so far known only for the weak-field limit. However, the powerful technique for 
solving the perturbation equations in the Kerr metric (Teukolsky 1973, Chrzanowski 
1975, Chandrasekhar 1978) provides the possibility of studying this question for a 
strong background gravitational field also. 

In the present paper the method of factorised Green functions initiated by 
Chrzanowski and Misner (1974) and Chrzanowski (1975) is developed further and it 
is shown in particular that the retarded factorised Green functions are real for any 
spin. Using this property we then construct the radiative Green functions in a form 
suitable for studying the energy and angular momentum balance between the particle 
and radiation field. The total conservation of these quantities is proved for all spins. 

The explicit expressions for the reaction force due to scalar, electromagnetic or 
gravitational radiation obtained are then analysed in the slow-motion limit. It is found 
that the azimuthal component of the radiative force remains non-zero for a particle 
at rest with respect to the locally static frame when any physical radiation is absent. 
This force is due to the non-zero angular momentum transfer from the static external 
source of non-axisymmetric perturbations to the rotating black hole (Hawking and 
Hartle 1972). Thus the static radiation reaction in the Kerr metric plays the role of 
the counteraction to Hawking’s tidal friction. It should be noted that earlier attempts 
to calculate the force acting on a static source using the retarded Green functions are 
not self -consistent, since in such an approach mass renormalisation is required. 
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The existence of the anomalous static radiation reaction in the Kerr metric is also 
discussed briefly in the context of the equivalence principle. 

2. The factorised Green functions and spin-weight reflection symmetry 

In this section we develop further the concept of the factorised Green functions 
(Chrzanowski 1975) with particular attention to their symmetry properties. First we 
reformulate the theory in terms of Hermitian conjugate projectors (for a general 
discussion see Wald 1978). Then the symmetry relations under reflection of the spin 
weight are studied and it is proved that the retarded factorised Green functions are 
real for all spins. 

The following notation for the Newman-Penrose (NP) quantities ,$ is used: ,,$ = $ 
is the scalar (real) massless field; l+ = F,,l'm" and -14 = 52F,vtiiwny are the elec- 
tromagnetic perturbations; Z +  = -C,vhrlpm~lhmr and -24 = -24CpyArn 'tii " n A f i T  are 
the tetrad projections of the perturbed Weil tensor ( z  = r +ia cos 0, a is the parameter 
of rotation, I, n, m and rh form the Kinnersley tetrad, the Boyer-Lindquist coordinates 
are understood and the signature of the metric is +---). The units G = c = 1 are 
used throughout, and a bar denotes complex conjugation. 

The perturbations $4 are subject to the Teukolsky equation 

,LIS+ = 4 7 ~  J<,T (2.1) 
where ,U is the Teukolsky (1973) wave opxator,  which is real for s = 0 (being the 
covariant D'Alembertian up to the factor J-g and complex for s # 0. Let the tensor 
quantity ,J mean ( q / p )  Tr T for s = 0 (T is the energy-momentum tensor, q is the 
scalar charge and p is the mass of a test particle), e J for s = *1 (J is the electromagnetic 
four-current) and T for s = *2. Then the source term in (2.1) can be written in the 
operator form 

(2.2) ,T = ,T - ,J 
with 

07 = 1 

1 T = f - 2  z -1 ( ~ ~ z  m - $J~Y,' l ) f 2  -lr = 

* 7 = 5 - 4  z - l  [ I J ~ ( ~ Y ~ " ~ ~ ~ Z - ~ ~ , ,  - + 9 0 ~ 4 z - 2 ~ T 1  ) z  '(1 Om + m 01) 
01 - 2 9 0 f 4 9 0 z  n ~ m ]  

-2r = -2 - -4 z -1 [ a J Z ~ ( 9 ~ l i ~ z - ' ~ - 1 + ~ - 1 5  1 4 z - - 2  911) 

+ t J i i ~ ~ z n ) z ~  
(2.3) 

x x 2 ( n O m +  m O n )  + Y - ~ Z ~ Y ~ Z X ~ O ~  

+ $ ~ ~ 9 T ~ 5 ~ 5 ~ O f 5 ~ 2 - ~ r h 0 m ]  

A = r - 2Mr f a X =  z f  = r 2 + a 2  cos2 e 
where a dot means a contraction over tensor indices, the operators Zs and 9" are 
defined as 

Ys = a, -(i/sin e) a,+, -ia sin 8 a, +s cot 8 
9,, = ~ , + [ ( r 2 + a 2 ) / A ] a , + ( a / A ) a , + 2 n [ ( r - M ) / A ]  (2.4) 

and the symbol + corresponds to the change a, + -a,, a,+, + -a,+,. 
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The variables in (2.1) separate into terms of the spin-weighted spheroidal harmonics 
,Z,,(e, cp) = ,S,,(e) elmrp, {AI = {U, 1, m I  

where E,, denotes the integral over w and the summation over I G /si and m, Im I .s 1. 
When all quantities are expanded in harmonics mu, the symbol + will correspond to 
the operation {m, U}+{-m, -U} ,  e.g. , Z ;  = J l - m - w .  For ,Z,, the usual normalisation 
is assumed, and the phase is chosen so that 

sz* = (-l)kzA , z , ,  = (-1)"'"-,z; (2.6) 

where P is the operator of space inversion, Pf(0, cp) = f ( ~  - 8 , ~  + cp) (in the following 
the cumulative label A will often be omitted for brevity). 

With the definitions dr* = [ ( r 2  + a 2 ) / A ]  dr, ,R,, = A-'/'(T' + u * ) - ~ / ~ , u ,  for the 
homogeneous case the equation for the radial functions becomes 

d2,u/dr*2 + ,V,u = 0 (2 .7)  

where the effective potential satisfies ,V = -,V. Taking the asymptotic form of the 
potential 

10 (w + 2is/r)  r * + a  
(2.8)  

where k = w -mu+, w+ = a/2Mr,  is the rotation velocity of the horizon and r+ = 
M + ( M 2  - u ~ ) ' ' ~ ,  we parametrise the two independent radial solutions as 

su up = ps 
+ y , ~ - s / 2  e- ikr*)  r* + -CO. 

The notation 'in' and 'up' follows that of Chrzanowski (1975).  His complex conjugate 
solutions ,uoUf = -,Gin and S ~ d o w n  = -,fiUp will also be used. 

The complex coefficients as, p,, us, T,, ks and v, are subject to numerous relations, 
which can be divided into two groups. The first consists of the Wronskian relations. 
Equating ;he asymptotic values of W ( s ~ i n ,  s ~ U P ) ,  W(-,fi'", ,U"") and W(-JZ'~, ,U'") 
one gets 

(2.10) -1 -1 - 1 -  --1 
k = K S  7 ,  Us = - K S  f f - ,T - ,  

and the 'unitarity' condition 

(2.11) 

The other connections follow from the relations of Teukolski and Press (1974) for 
radial solutions with a different sign for s, 

s U s R ~ =  -,RA, (2.12) 
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when the operators of spin-weight inversion sU are given explicitly by 

-1U = 2B-’9:  1 U = &-19:2 A 
-2u = 4c-’9a40 2u =aA2c’-1B:4A2 

with 

B = (F2+4my-4y2)lI2 

C ={B2[(F-2)2+36y(m -y ) ]+48y(2F- l ) (2y  - m ) -  1 4 4 ~ ~ } ” ~ +  12iMw 

F = ,E + y 2  -2my y = a w  

(2.13) 

and where is the angular eigenvalue. We impose the conditions (2.12) on the 
independent ‘in’ and ‘up’ solutions; the corresponding relations for ‘out’ and ‘down’ 
radial functions will be fixed by their definitions. Using the asymptotic relation valid 
as r*+m 

(2.14) 9 i ’ s ’ A ’ s ’  e-lkr* = ( -4)”’(2Mr+k)2’”~_,s  ( K - ~ K ~ )  ‘sl-lA-lsl e-lkr* 

the following relations can be obtained: 

where Qo = 1, Q1 = -B and Q2 = C1’2. The remaining free parameters in (2.9) will 
be chosen later to provide the desired form of the Green functions. 

With these preliminaries completed we now turn to the construction of the fac- 
torised retarded Green functions. Denote by ,P the field perturbations oP = 4, +IP = A 
(the electromagnetic four-potential) and *2P = h (hwv is the metric perturbation), 
positive and negative signs of s corresponding to the outgoing and ingoing gauges in 
the notation of Chrzanowski (1975). According to conjecture of the factorised Green 
functions any field perturbation ,P may be computed via the formula 

,P(x) = I sGret(x, x’) * sJ(x’)-d4~’ (2.16) 

where the retarded Green function has the factorised form 
w 

sGret(x, x’) = i S s - ( s ~ ~ ~ ( x ) O s j i ~ t ( x ’ ) e ( r - r ’ )  
A.P 

(2.17) 

where Ss is some normalisation constant and p = *l is the helicity index. The crucial 
point of the theory is the determination of the expansion modes smAp. Their explicit 
form was found by Chrzanowski (1975) via integration by parts in (2.16) and sub- 
sequent comparison of the resulting & with those obtained from the Teukolski 
equation. A simpler way consists in using the Hermitian conjugate projectors (a 
similar idea was suggested by Wald (1978)). 

Define the scalar product of two tensor-valued functions q ( x )  and 4 ( x )  of equal 
rank as 

- down + sdb (XI o snAp (x ’10 ( r ’  - r ) )  

(q, 9) = @(x) * 4(x)J< d4x (2.18) 
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where the dot means the contraction over the tensor indices. For every tensor operator 
M taking the n-index field I& into the k-index field MI& the Hermitian conjugate M* 
(labelled with an asterisk to avoid confusion with the + introduced previously) will 
be defined through the relation 

(2.19) 

M* acts on the space of k-index tensors taking them into n-index ones. Clearly, the 
scalar operators of multiplication, such as z ,  will be transformed to their complex 
conjugate, e.g. z*  = f. The usual rule (AB)* = B*A* also holds. The Hermitian 
conjugates to the operators TS and a,, are 

k, M 4 )  = (M*cp, I&). 

2': = -x-12';-sx 97: = -x-l9-,,x (2.20) 

Now we introduce the mode projectors s ~ , m  which are just the given previously 
(2.3) with 3, replaced by -iw and by im. By the definition (2.3) the operators ,T,, 
act in the space of s-rank tensors ,J taking them into scalars. So the Hermitian 
conjugates s~:m act on the space of scalar functions taking them into tensors of rank 
s. These operators are just what is needed to contract the modes ,nAP out of the 
scalar expansion modes, the proposed expression being 

(2.21) s n , ~ p  =Ip-sTwm-sZ,\sR i e?" 

where Ip = 1 + p P  and p = *1 is the helicity projector. Using equations (2.3) and 
the conjugation rules (2.20) one can verify explicitly that the proposed modes coincide 
up to numerical factors with the modes given by Chrzanowski (1975), the factor Ss 
in (2.17) being given by 8, = 2s-'s'Alsl, A o =  1, A 1  = -1, A 2  = -I. 

Once the field perturbations ,P are found, the reconstruction of the NP quantities 
s+b = ,M ,P is greatly facilitated by use of the following representation for the projec- 
tors ,M: 

* 

1 

1M = 9 i ( 1 T * ) - 1 =  &?:2':(-1~*)-~ 

(2.22) 

where the inverse operators are defined by ( s ~ * )  * - l ( , ~ * )  = 1. Note that every NP 
scalar s+b can be obtained through equations (2.22) in two different ways corresponding 
to the outgoing and ingoing gauges. The following relations appear to be important 
for establishing that both gauges actually give the same result: 

C ( - a n . ~ p  * s J ) =  (4OIsiQL;)-' C ( s n ~ p  ,J) (2.23) 

(2.24) 
Combining equations (2.161, (2.17), (2.21) and (2.22) we return to the expansion (2.5) 
with some numerical factor. For consistency the relation 

(Q~s!)-s~Q~s~ls- 's'  (2.25) 
has to be imposed. Now all the coefficients are determined except for an overall 
normalisation constant. For later convenience the following choice is suitable: 

(2.26) 

P P 

-sTwm-sZ.i * = (- l)f+mP-s?:L-sz -+  ,I. 

(r p = 23lsl+s-2 

Lys  = 23/2(1sl+s)-l ( Q I s l ) - ( S + ~ S ~ ) / 2  p, = 23/2lsl-1/2s-1 -s (&) (s - ls l ) /2  

s s  
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With such a normalisation all the homogeneous radial solutions ('in', 'up', 'out' and 
'down') satisfy 

,R; = (-l)',R \. (2.27) 

Now we are able to prove that the retarded factorised Green functions so defined are 
real for all s. Indeed, using the relations (2.23) and (2.26) one can show that in terms 
of the quantities 

* 
sf.\ = - s r w m  -S 13 .\ 

the Green functions (2.17) may be presented as 

(2.28) 

0 
sGre t (x ,x ' )=4ReC i&-exp[im(cp -cp')-iu(t-t)]  

.\P 101 

3. Radiative Green functions 

To calculate the radiation reaction force upon the point test particle the radiative 
Green functions are needed; these can be written, with account for the reality of the 
retarded ones, as 

,Grad(x, x')  = ;('Gre'(x, x ' )  - ,Gad"(x, x'))  = +(,Gret(x, x ' )  - 'Gret(x', x) ) .  (3.1) 

Using the representation (2.17) one gets 

x [(,RUp(r),~""'(z') + s R d o w n ( r ) S ~ i n ( r ' ) ) ~ ( r  - r ' )  

+ (,Rin(r),Rdown(r') + ,Ro"t(r) ,~"P(r ' ) )~(r '  - r ) ] .  (3.2) 

Define the 'denormalised' radial functions as suup = p ;',uUp and ,uin = cy, -1 ,uin.  Accord- 
ing to the asymptotic formulae (2.9) they are connected by the relations 

in -,U up = ,U - CTJJ up 
down = 

(3.3) su Out = = K,r , f - , (uk / luk / )  ( , U ~ ~ + ~ - ~ ~ U ' " ) .  

From here, with account for the relation 
- - 

K-,T-,T, = K,T,T-, (3.4) 

following from the last of equations (2.15), we get the connection formulae for the 
spin-reflected radial functions of 'out' and 'down' types: 

(3.5) ,U,R out(down1 = out(down) G-&, (a,pJ-,R 

For further transformations we write down with the aid of equations (3.3) the following 
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quadratic combination: 

On the other hand 

sfiup(r)-su uP(r') = ( K  - , r - s~ , ) -2( -su  i n ( r )  - u-ss~in(r)(sf i in(rf)  - ~ ~ - ~ u ' " ( r ' ) ) .  (3.7) 

Eliminating from equations (3.6) and (3.7) the terms proportional to Jin(r)Jin(r') and 
- s ~ i n ( r ) - s u i n ( r ' )  and using the 'unitarity' condition (2.1 1) we obtain 

-su up(r)-sui"(rf) + s6up(r~sfiin(r')  = ,Gin(r)-~uin(r') + K-,r-,7s(ok/luk ~)s i j"P(r ) - ,u"P(r f ) .  

( 3 .8 )  

Note that the left-hand side of this relation is invariant under combined complex 
conjugation and spin-weight reflection s t* -s, while on the right-hand side the 
arguments r and r' will be interchanged. Consequently, the right-hand side of (3.8) 
has to be symmetric in r and r ' .  Taking this into account and using equations (2.26), 
(3.4) and ( 3 . 3 ,  we transform the radiative Green function (3.2) to 

i&w o k  
S G r a d ( ~ ,  x ' )  = C  ~ 2"-'(,.rrP2",'C~)O,i~~(~') +- K ~ T ~ K ~ v ~  ( ~ ) @ ~ i ~ " ( x y ' ) ) .  

' i P  14 lwk I 
(3.9) 

Note that the radiative Green function does not have a factorised form in contrast to 
the case of flat space-time. The existence of the second term in (3.9) is due to the 
absorption of radiation at the event horizon of the Kerr metric. The possibility of a 
negative sign for the second term is related to the superradiance phenomenon. 

4. Equations of motion and the conservation laws in radiative processes 

Within the linearised theory adopted, all types of radiation may be considered indepen- 
dently. First we write the equations of motion for a test particle, interacting with the 
scalar field ~ i , h  =I&, the interaction constant being q. In accordance with the wave 
equations (2.1) we have 

where U, = g,, dz "/dr is the covariant four-velocity and D/d r  = U 'VA is the covariant 
derivative along the world line of the particle ~ ~ ( 7 ) .  For the electric charge one can 
write 

Du, aA, dA,\ 
- e  ('u~--j. d r  (4.2) 

The motion of the neutral particle taking correct account of its gravitational field can 
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be put into a form similar to (4.1): 

In all three cases the left-hand sides of the equations of motion are just the covariant 
derivatives of the covariant canonical four-momentum p ,  with respect to the back- 
ground metric. The right-hand sides of equations (4.1)-(4.3) describe the action of 
the proper fields on the particle, in all three cases being of the same structure. So 
after the renormalisation on mass, similar to that in the case of electrodynamics, we 
obtain equations of motion of the same form with only the radiative part of the proper 
fields present on the right-hand sides. Discarding the total derivative terms on the 
right-hand sides of equations (4.2) and (4.3), which do not contribute to the irreversible 
losses due to radiation, we can write the equations of motion taking account of the 
radiative reaction in the unified form 

where the radiative forces are given by 

= ; p ~ y ~ A  ah:”R/ax+. (4.7) 
Since the Kerr metric g,,, does not depend on the coordinates t and cp, equations 

dp,/dT = l s l  f L a d .  (4.8) 
In the absence of the radiative force these equations express the conservation of 
energy and angular momentum of a particle in the Kerr space-time. Consider now 
the energy and angular momentum radiative losses for a large proper time interval 
(-T, T), T + 03 (for periodic motion it can be easily renormalised to unit time): 

(4.4) for p = i, {i} = {t ,  cp} = (0 ,  3) are simplified to 

W cc 

,8, = -(-l)’ / (dpi/dT) d.r = --(-l)’ /-, l s 1  fYd d r  i =0, 3 (4.9) 

where the integral is taken along the world line of a particle. The radiative fields may 
be computed via the formula 

- W  

sPrad(x) = 5 ,Grad(x, x’)  * ,J(x’)J-g(x’) d4x’, 

the source terms for different s being 

,J(x) = J c?‘~’(x, z(r))(-g)-1’2 drl,lH(r) 

o H = q  l H p = e u w  2H’”” = PU ,U”  

where the 6 function is normalised according to 

8‘4’(x, x’) d4x‘ = 1. 

(4.10) 

(4.11) 

(4.12) 
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Using the radiative Green functions (3.9) we obtain the following universal expression 
for the radiative losses valid in all three cases of scalar (s = O), electromagnetic (s = *l) 
or gravitational (s = *2) radiation: 

(4.13) 

The scalar products in this formula are defined according to equation (2.18). With 
the aid of equations (2.23) and (2.24) one can prove that the right-hand side of (4.13) 
does not depend on the sign of s, i.e. both the ingoing and outgoing gauges give the 
same result. Note that in the original formulation by Chrzanowski (1975) different 
gauges were used for ingoing and outgoing radiation. 

Two terms in equation (4.13) are easily identified with the energy and angular 
momentum losses carried away by the radiation fields to infinity and to the horizon 
respectively. Indeed, using the expressions for radiation fluxes in the NP formalism 
(Teukolsky and Press 1974) and applying the retarded Green function (2.17), for the 
desired quantities at infinity we get 

(4.14) 

and at the horizon of the black hole 

Comparing equations (4.14) and (4.15) with (4.13) we have 

(4.15) 

i.e. the radiation losses computed locally as a result of the radiation reaction are 
actually identical with the corresponding quantities associated with the radiation fields 
in two wave zones at infinity and at the horizon of a hole. The analogous theorem 
can be proved in the case of periodic motion for the quantities per unit time. 

5. Slow-motion approximation 

Suppose that the particle motion is slow enough for the frequency of radiation to be 
small compared with the inverse mass of a hole, wM << 1. Under this condition, aw << 1 
and the angular functions become the spin-weighted spherical harmonics YIm. The 
radial functions of ‘in’ type are also known (Starobinski and Churilov 1973), with our 
normalisation being 

(5.1) 

where F is the hypergeometric function. The ‘up’ solution may be written in terms 
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of the hypergeometric function of the argument l/x as follows 

1 / 2  P S  ( I  - s ) !  r(l+ 1 + 2iQ) - [ - l+ iQ  
SRup = / k  1 -  lek/ ~ , 7 , ( 2 M r + ) ~ ’ ~  (21 + l)! T(-s +2iQ) 

x ( l + x ) - ” i Q F ( I - s + l ,  l + l - 2 i Q ;  21+2; - l /x ) .  (5.2) 

Matching (5.1) and (5.2) with the confluent hypergeometric function solutions valid 
at large x leads to the following values for the barrier coefficients: 

( I  - s ) !  ( I  + s) !  r(I + 1 + 2iQ) ( 4 i v ) ’ - ” ’  - ~ 

( 2 ~ r + )  1’2 

2(r+ -MI 21! (21+1)! r ( l - s + 2 i Q )  
7, = / / ~ / w / ” ~ 2 ~ ’ ( ~ ~ - a ~ ) ~  

(5.3) 
( I  + s) !  - i + s - l ( i v ) - 2 ” M 2 -  - 

CT, = (-1) a’)’__ 
( 1 - s ) !  

v =2w(r+-M) 

where r is the gamma function. 
Using these expressions the radiative Green functions can be constructed explicitly 

and the radiation reaction forces can be found. The resulting formulae, however, are 
too cumbersome and we shall give them only for the large-distance limit r >>M. In 
this case the radiative Green functions have the explicit form 

I 21 + IP-s l 2  
I W ( i - 1 ’ )  

x (zp-sT:m(X )-sz(@, (P 8 ( Z p - s T k  ( x ’ ) - s z ( @ ‘ ,  (P‘)) e-  . 
For small w the I series in (5.4) are rapidly convergent, the leading term being 1 = IsI. 
The following formulae are obtained taking only the leading terms in both ‘out’ and 
‘down’ contributions in (5.3) into account. For simplicity the case of circular motion 
with radius r and angular velocity R in the equatorial plane @ = +T is considered. 

(4(M:r;a2))‘+s-1 1 (2 iQ--s ) IF(1+1+2iQ)( I+~)!  
4 M r + k ( i ~ ) ~ ,  K - ,  2iQi-s  T(s + 2iQ) 

(5.4) 

5.1. Scalar radiation 

Under the conditions wM<< 1, r >>M the non-zero components of the radiative force 
are 

The first term in (5.5) corresponds to radiation going to infinity and the second to 
radiation absorbed by a hole (scattered and amplified when R < w + ) .  Note that the 
first term falls more rapidly with decreasing R, and for sufficiently small angular 
velocity of the particle the second term becomes dominant. In the case R= W +  the 
black hole does not absorb radiation. 

5.2. Electromagnetic radiation 

Under the same conditions the components of the radiative force are given by equations 
(5.5) and (5.6) with q2  replaced by 2e2, so the same conclusions are valid. In addition, 
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the radiative force acting upon a point magnetic dipole p at the same motion has 
been computed. At the locally static frame the components of the radiative force for 
sufficiently slow motion ('down' terms dominating) are 

2 FG = i ( p ~  +4p;) 
(5.7) 

F; = - 2 g k f p ~  

g = $W2r+(w+ - n) / r7 .  

FG = gcLipcL;, 

A rotating moment of the radiative force on a dipole also exists. 

5.3. Gravitational radiation 

The non-zero components of the radiative force are 

( 5 . 8 )  16 2 ~ 5 r +  2 fzd= 5 k  n r + ~ g  --g-(n-w+)(l+3a2/M2) r 

fy  = -n*fzd. (5.9) 

Here, as previously, the first term corresponds to gravitational radiation going to 
infinity and the second to radiation absorbed by a hole. For geodesic motion the 
second term is ( ~ V f / r ) ~  smaller than the first (for sufficiently small a ) .  In the ultrarela- 
tivistic case (geodesic synchrotron radiation) both terms become equal. 

6. Static radiation reaction in the Kerr metric and tidal friction 

The common feature of expressions ( 5 . 5 )  and (5.6) for the azimuthal component of 
radiation reaction forces derived in the case of a circularly moving particle is the 
non-zero limiting value when fl+ 0, i.e. for a particle at rest with respect to the locally 
static frame. In this limit neither real radiation is present; indeed, the t components 
of the reaction force (5.6) and (5.9) tend to zero when R+O. For a particle at rest 
at the point ( r ,  e)  the azimuthal components of the radiative force in scalar, electro- 
magnetic and gravitational cases are (for r >>M) 

of',d = - $ a q 2 ~ 2  sin2 e / r4  

f cd = - fae  2M2 sin2 e l r4  

The sign of these expressions corresponds to acceleration of a particle in the 
direction of rotation of the black hole. Consequently, the rotation of the hole itself, 
by the global conservation of angular momentum, must slow down. This effect is just 
the well known tidal friction (Hawking and Hartle 1972). Indeed, one can easily 
recognise in equation (6.3) the familiar expression for the rate of angular momentum 
loss by the Kerr black hole in the static external field of a point-like source. 

The question of back reaction upon the external source of non-axisymmetric 
perturbations of the Kerr space-time has been discussed previously (see, e.g., 
Chrzanowski 1976), but the nature of the back force as the radiation damping force 
was not established. Chrzanowski (1976) claimed that the force acting upon a source 
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of perturbations in the tidal friction problem can be computed using the retarded 
potentials. However, in this case the Coulomb-like infinite terms are present and 
some regularisation procedure is needed to exclude them. It was actually the part of 
the angular momentum absorbed by a hole that was computed in the reference cited 
above. As we have seen here, the physical counteracting force to the Hawking tidal 
force is just the force of radiation reaction, the azimuthal component of which remains 
non-zero even in the absence of real radiation. 

From the general point of view the existence of the radiation reaction force in 
situations when no radiation takes place might seem paradoxical; in a sense, the 
‘inverse’ Born paradox (radiation present, but no reaction force). It should be noted, 
however, that in the present situation the static force of radiation reaction does not 
work and energy is conserved unlike in the Born case. 

7. ‘Violation’ of the equivalence principle 

One could consider the existence of the static force of radiation reaction in the Kerr 
metric, in addition to the classical renormalisation of mass of a test particle in the 
Schwarzschild metric (Frolov and Zel’nikov 1980), as a non-trivial example of effective 
‘violation’ of the equivalence principle due to the non-local effects of interaction. Of 
course, this does not at all contradict the ‘first principles’ of general relativity: the 
radiative effects mean that the particle can no longer be considered as the test one. 
From the physical point of view it is interesting, however, to compare the magnitude 
of the ‘anomalous’ gravitational force (6.3) and the ‘usual’ gravitational force. For 
8 = $ 7 ~  the ratio of the radiative force (6.3) to the Newtonian force appears to be 

Though this formula is strictly valid only for r >>M, for a rough estimate one can put 
r - M  (corresponding more accurate expressions for the radiative force can be found 
using formulae (5,1)-(5.3)). So the maximal ‘violation’ of Newton’s law is of order 
p a / M 2 ;  the ratio p / M  has to be regarded as a small quantity within the linearised 
theory used. 

For an elementary particle, e.g. a proton, the ratio of the anomalous force (6 .2 )  
to the Newtonian force is 

Putting a - M - r for the rough estimate, we shall see that it becomes of the order 
of unity for a black hole of mass M - 1014pp. The question of whether the effects 
considered would be significant at the quantum level, in particular, for the picture of 
the black hole evaporation should be considered. 
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